Федеральное государственное бюджетное образовательное учреждение высшего образования «Дальневосточный государственный университет путей сообщения»
Кафедра «Физика и теоретическая механика»

РАБОЧАЯ ТЕТРАДЬ

для выполнения контрольных работ по физике (два семестра, часть 2)

ФИО студента
номер зачетной книжки
Учебный год
Курс

Хабаровск

Пример 1.

Электрон в однородном магнитном поле движется по винтовой линии радиусом R = 5cM и шагом h = 20cM. Определить скорость электрона, если индукция магнитного поля $B = 0.1 M T \pi$.

Дано: R = 5cM = 0.05M, h = 20cM = 0.2M, $B = 0.1MT\pi = 10^{-4}T\pi$.

Найти: υ .

Решение: В магнитном поле на электрон действует сила Лоренца, являющаяся центростремительной:

$$F_{II} = F_{II.C.} \Longrightarrow qB\upsilon_H = \frac{m\upsilon_H^2}{R}$$
,

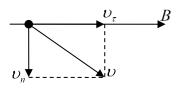
Откуда нормальная составляющая скорости:

$$\upsilon_{H} = \frac{qBR}{m} = \frac{1.6 \cdot 10^{-19} \cdot 10^{-4} \cdot 0.05}{9.11 \cdot 10^{-31}} = 8.78 \cdot 10^{5} \left(\frac{M_{C}}{C} \right),$$

и т.к. угловая скорость $\omega\!=\!\frac{\upsilon_{\!\scriptscriptstyle H}}{R}\!=\!\frac{2\pi}{T}$ и тогда:

$$qB = \frac{m \cdot 2\pi}{T}$$
,

Откуда период обращения электрона:


$$T = \frac{2\pi \cdot m}{qB} = \frac{2 \cdot 3.14 \cdot 9.11 \cdot 10^{-31}}{1.6 \cdot 10^{-19} \cdot 10^{-4}} = 3.58 \cdot 10^{-7} (c),$$

Тангенциальная составляющая скорости:

$$\upsilon_T = \frac{h}{T} = \frac{0.2}{3.58 \cdot 10^{-7}} = 5.59 \cdot 10^5 \left(\frac{M}{c} \right),$$

Эти две скорости перпендикулярны и тогда общая скорость:

$$\upsilon = \sqrt{\upsilon_T^2 + \upsilon_H^2} = \sqrt{(5.59 \cdot 10^5)^2 + (8.78 \cdot 10^5)^2} = 1.04 \cdot 10^6 (\%)$$

Задача 1. Электрон в однородном магнитном поле движется по винтовой линии радиусом R и шагом h. Определить скорость электрона, если индукция магнитного поля $B\!=\!0,\!5$ мTл.

Вариант	1	2	3	4	5	6	7	8	9	10
R, см	6	6,2	6,5	7	8	6,5	5,2	5,5	5,4	5
h, см	25	15	20	20	20	24	22	25	20	18

Пример 2.

Конденсатор электроемкостью 10мкФ, заряженный до напряжения 100В, разряжается через катушку с малым активным сопротивлением и с индуктивностью 10мГн. Найти максимальное значение силы тока в катушке. Какова объемная плотность энергии магнитного поля катушки, если ее длина 20см и площадь поперечного сечения 10см²?

Дано: C = 10ик $\Phi = 10^{-5}$ Φ , U = 100В, L = 10и Γ н $= 10^{-2}$ Γ н, l = 20см= 0,2м, S = 10см $^2 = 10^{-3}$ м 2

Найти: J, ω.

Решение: По закону сохранения энергии полная энергия заряженного конденсатора равна полной энергии катушки с током:

$$\frac{CU^2}{2} = \frac{LJ^2}{2},$$

Откуда сила тока в катушке:

$$J = U\sqrt{\frac{C}{L}} = 100\sqrt{\frac{10^{-5}}{10^{-2}}} = 3.16(A).$$

Объемная плотность энергии:

$$\omega = \frac{W}{V} = \frac{LJ^2}{2} = \frac{10^{-2} \cdot 3,16}{2 \cdot 0,2 \cdot 10^{-3}} = 25 \cdot 10^3 \left(\frac{\text{Mosc}}{\text{M}^3} \right).$$

Задача 2. Конденсатор электроемкостью С, заряженный до напряжения U, разряжается через катушку с малым активным сопротивлением и с индуктивностью L. Найти максимальное значение силы тока в катушке. Какова объемная плотность энергии магнитного поля катушки, если ее длина 20см и площадь поперечного сечения 10cm^2 ?

Вариант	1	2	3	4	5	6	7	8	9	10
С, мкФ	10	11	12	13	14	15	16	17	18	19
U, B	110	111	112	113	114	115	116	117	118	119
L, мГн	10	11	12	13	14	15	16	17	18	19

Пример 3.

На тонкую пленку в направлении нормали к ее поверхности падает свет с длиной волны 500нм. Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину пленки, если показатель преломление материала пленки равен 1,4.

Дано: $\lambda = 500$ н $M = 5 \cdot 10^{-7} M$, n = 1,4.

Найти: d_{\min} .

Решение: Длины хода лучей:

$$l_1 = \frac{\lambda}{2}$$
 и $l_2 = 2dn$.

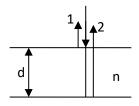
Разность хода этих лучей:

$$\Delta = l_2 - l_1 = 2dn - \frac{\lambda}{2}.$$

Условие максимального усиления света:

$$\Delta = 2k\frac{\lambda}{2}$$
,

Тогда приравняв эти разности ходов:


$$2dn - \frac{\lambda}{2} = 2k\frac{\lambda}{2},$$

Откуда выражаем толщину пленки:

$$d = \frac{(2k+1)\lambda}{4n}.$$

И ее минимум при k=0:

$$d_{\min} = \frac{\lambda}{4n} = \frac{5 \cdot 10^{-7}}{4 \cdot 1.4} = 8.9 \cdot 10^{-8} (M).$$

Задача 3. На тонкую пленку в направлении нормали к ее поверхности падает свет с длиной волны λ . Отраженный от нее свет максимально усилен вследствие интерференции. Определить минимальную толщину пленки, если показатель преломление материала пленки равен n.

Вариант	1	2	3	4	5	6	7	8	9	10
λ, нм	450	475	500	525	550	575	600	650	700	750
n	1,4	1,5	1,6	1,7	1,8	1,4	1,5	1,6	1,7	1,8

Пример 4.

Чему равен угол между главными плоскостями поляризатора и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшается в четыре раза? Поглощением света пренебречь.

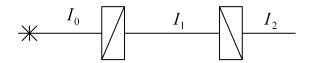
Дано:
$$\frac{I_0}{I_2} = 4$$
.

Найти: ϕ .

Решение: Пройдя через поляризатор свет теряет половину своей интенсивности:

$$I_1 = \frac{I_0}{2},$$

После прохождения поляризатора и анализатора интенсивность света:


$$I_2 = I_1 \cos^2 \varphi = \frac{I_0}{2} \cos^2 \varphi.$$

Из условия $rac{I_0}{I_2}\!=\!4$, получим:

$$\frac{1}{4} = \frac{1}{2}\cos^2\varphi,$$

И угол между главными плоскостями поляризатора и анализатора:

$$\varphi = \operatorname{arccos}\sqrt{\frac{1}{2}} = 45^{\circ}.$$

Задача 4. Чему равен угол между главными плоскостями поляризатора и анализатора, если интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшается в k? Поглощением света пренебречь.

Вариант	1	2	3	4	5	6	7	8	9	10
k	2	2,5	3	3,5	4,5	5	5,5	6	6,5	7

Пример 5.

Длина волны света, соответствующая красной границе фотоэффекта для некоторого металла $\lambda_k = 275 \text{HM}$. Найти работу выхода электрона из металла светом с длиной волны 180 HM, и максимальную энергию электронов.

Дано: $\lambda_k = 275$ н $M = 2,75 \cdot 10^{-7} M$, $\lambda = 180$ н $M = 1,8 \cdot 10^{-7} M$.

Найти: A , T_{\max} .

Решение: Воспользуемся формулой для красной границы фотоэффекта:

$$hv_k = A \Longrightarrow A = h\frac{c}{\lambda_a}$$
,

Подставив числовые значения, найдем работу выхода электрона:

$$A = 6,625 \cdot 10^{-34} \frac{3 \cdot 10^8}{2,75 \cdot 10^{-7}} = 7,22 \cdot 10^{-19} (\text{Дж}).$$

Воспользуемся уравнением Эйнштейна для внешнего фотоэффекта:

$$E = h\nu = h\frac{c}{\lambda} = A + T_{\text{max}},$$

Откуда выразим максимальную энергию электронов:

$$T_{\rm max} = h \frac{c}{\lambda} - A = 6,625 \cdot 10^{-34} \frac{3 \cdot 10^8}{1,8 \cdot 10^{-7}} - 7,22 \cdot 10^{-19} = 3,8 \cdot 10^{-19} (Дж).$$

Кинетическая энергия электрона:

$$T=\frac{m\upsilon^2}{2}$$
,

Откуда выразим скорость электрона:

$$\upsilon = \sqrt{\frac{2T}{m}} = \sqrt{\frac{2 \cdot 3.8 \cdot 10^{-19}}{9.11 \cdot 10^{-31}}} = 9.1 \cdot 10^{-5} \left(\frac{M_{C}}{c} \right).$$

Задача 5. Длина волны света, соответствующая красной границе фотоэффекта для некоторого металла λ_k . Найти работу выхода электрона из металла светом с длиной волны λ , и максимальную энергию электронов.

Вариант	1	2	3	4	5	6	7	8	9	10
$\lambda_{\!\scriptscriptstyle k}$, HM	270	269	268	267	266	265	264	263	262	261
λ, нм	178	177	176	175	174	173	172	171	170	169

Пример 6.

lpha -частица движется по окружности радиусом r = 8,3мм в однородном магнитном поле, напряженность которого H = 189 $^{KA}\!\!\!/_{M}$. Найти длину волны де Бройля для lpha -частицы.

Дано:
$$r = 8,3$$
мм $= 8,3 \cdot 10^{-3}$ м, $H = 18,9$ $\stackrel{\kappa A}{/_{M}} = 18,9 \cdot 10^{3} \stackrel{A}{/_{M}}$.

Найти: λ .

Решение: Магнитное поле действует на заряд с Лоренцовой силой $F_{\!\scriptscriptstyle J}=qB\upsilon=q\mu_{\!\scriptscriptstyle 0}H\upsilon$, сообщая ей

центростремительное ускорение $F_{\mathcal{U}.C.} = \frac{mV^2}{r}$, тогда имеем:

$$q\mu_0H\upsilon=\frac{m\upsilon^2}{r}$$
,

Откуда радиус окружности:

$$\upsilon = \frac{q\mu_0 H \upsilon r}{m} = \frac{2 \cdot 1,6 \cdot 10^{-19} \cdot 12,56 \cdot 10^{-7} \cdot 189 \cdot 10^3 \cdot 8,3 \cdot 10^{-3}}{4 \cdot 1,67 \cdot 10^{-27}} = 9440 \left(\frac{M_C}{C}\right).$$

Импульс lpha -частицы:

$$P = mi$$

И длина волны де Бройля:

$$\lambda = \frac{h}{P} = \frac{h}{m\nu} = \frac{6,625 \cdot 10^{-34}}{4 \cdot 1,67 \cdot 10^{-27} \cdot 9440} = 10^{-11} (M).$$

Задача 6. lpha -частица движется по окружности радиусом r в однородном магнитном поле, напряженность которого H. Найти длину волны де Бройля для lpha -частицы.

Вариант	1	2	3	4	5	6	7	8	9	10
r, mm	9,6	9,7	9,5	9,3	9,0	8,9	8,5	8,1	8,0	7,8
Н,кА/м	18,6	19,4	19,6	18,7	18,8	18	18,2	19,5	18,7	19,3