Федеральное государственное бюджетное образовательное учреждение высшего образования
«Дальневосточный государственный университет путей сообщения»
Кафедра «Физика и теоретическая механика»
РАБОЧАЯ ТЕТРАДЬ
для выполнения контрольных работ по физике (два семестра, часть 1)
ФИО студента
номер зачетной книжки

Хабаровск

Учебный год _____

Курс_____

Пример 1.

Дано:
$$\upsilon_1 = 60^{KM}_{_{}} = 16,67^{_{_{}}}$$
, $\upsilon_2 = 80^{KM}_{_{_{}}} = 22,22^{M}_{_{_{}}}$.

Найти: \mathcal{U}_{CP} .

Решение: Средняя скорость — это отношение проделанного пути к времени затрачиваемое на это преодоление. Если весь путь обозначить за S, а полное время за t, то формула средней скорости $\upsilon_{CP}=\frac{S}{t}$. Разделим весь пусть на два участка, в которых автомобиль движется равномерно и для которых время движения рассчитывается по формуле:

$$t = \frac{S}{D}$$
.

Время движения через первый участок (три четверти пути) будет:

$$t_1 = \frac{S_1}{v_1} = \frac{3S}{4v_1}$$

а второй участок (четверть пути) будет пройден за время:

$$t_2 = \frac{S}{\upsilon_2} = \frac{S_2}{4\upsilon_2} \,.$$

Общее время прохождения пути будет:

$$t = t_1 + t_2 = \frac{3S}{4\nu_1} + \frac{S}{4\nu_2} = \frac{S}{4} \left(\frac{3\nu_2 + \nu_1}{\nu_1 \nu_2} \right).$$

Средняя скорость автомобиля

$$\upsilon_{CP} = \frac{S}{t} = \frac{S}{\frac{S}{4} \left(\frac{3\upsilon_2 + \upsilon_1}{\upsilon_1 \upsilon_2} \right)} = \frac{4\upsilon_1 \upsilon_2}{3\upsilon_2 + \upsilon_1} = \frac{4 \cdot 16,67 \cdot 22,22}{3 \cdot 22,22 + 1 \cdot 16,67} = 17,78 \left(\frac{M}{c} \right).$$

Задача 1. Три четверти своего пути автомобиль прошел со скоростью $\upsilon_{\!\scriptscriptstyle I}$, а остальную часть пути – со скоростью $\upsilon_{\!\scriptscriptstyle 2}$. Какова средняя скорость движения автомобиля $\upsilon_{\!\scriptscriptstyle CP}$?

Вариант	1	2	3	4	5	6	7	8	9	10
v_{l} , m/c	10	12	15	17	20	25	5	6	7	8
υ ₂ , м/с	25	5	6	7	8	10	12	15	17	20

Пример 2.

Маховик в виде диска массой m=80кг и радиусом R=30см находится в состоянии покоя. Какую работу A нужно совершить, чтобы сообщить маховику частоту $n=10c^{-1}$?

Дано: m = 80кг, R = 30см = 0,3м, $n = 10c^{-1}$.

Найти: А.

Решение: Момент инерции маховика:

$$J=\frac{mR^2}{2}.$$

Угловая скорость маховика $\omega = 2\pi m$. Работа – изменение энергии:

$$A = \frac{J\omega^2}{2}$$
,

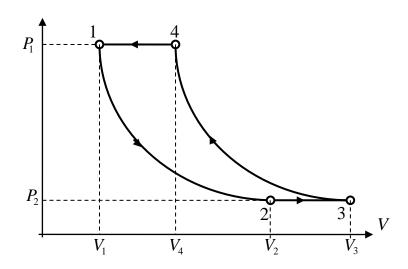
Подставляя момент инерции и угловую скорость $\omega = 2\pi n$:

$$A = \frac{mR^2}{2} \cdot (2\pi n)^2 = mR^2 \pi^2 n^2 = 80 \cdot 0.3^2 \cdot 3.14^2 \cdot 10^2 = 7 \cdot 10^3 (\text{Дэю}).$$

Задача 2. Маховик в виде диска массой m и радиусом R находится в состоянии покоя. Какую работу A нужно совершить, чтобы сообщить маховику частоту n?

1 1 F										
Вариант	1	2	3	4	5	6	7	8	9	10
т, кг	50	55	60	65	70	75	80	85	90	100
R, cm	150	140	130	120	110	100	90	80	70	60
n, c ⁻¹	10	15	20	10	15	20	10	15	20	10

Пример 3.


Наименьший объем газа, совершающего цикл Карно, 150л. Определить наибольший объем, если объем в конце изотермического расширения 600л, а в конце изотермического сжатия 200л.

Дано:
$$V_1=150$$
 $\pi=0.15$ \mathcal{M}^3 , $V_2=600$ $\pi=0.6$ \mathcal{M}^3 , $V_4=200$ $\pi=0.2$ \mathcal{M}^3 .

Найти: V_3 .

Решение: Делаем схему этого процесса. Так как процессы 1-2 и 3-4 изотермические, то оп закону Бойля-Мариотта PV = const:

$$\begin{split} P_1V_1 = P_2V_2 \Longrightarrow & \frac{P_1}{P_2} = \frac{V_2}{V_1} \text{ in } \\ P_1V_4 = P_2V_3 \Longrightarrow & V_3 = V_4 \frac{P_1}{P_2} = V_4 \frac{V_2}{V_1} = 0.2 \cdot \frac{0.6}{0.15} = 0.8 \text{ (M}^3 \text{)}. \end{split}$$

Задача 3. Наименьший объем газа, совершающего цикл Карно, V_{I} =150л. Определить наибольший объем V_{3} , если объем в конце изотермического расширения V_{2} , а в конце изотермического сжатия V_{4} .

Вариант	1	2	3	4	5	6	7	8	9	10
V_2	600	610	620	630	640	650	660	670	680	700
V_4	190	200	210	230	240	250	270	300	310	350

Пример 4.

Какую работу надо произвести, чтобы выдуть мыльный пузырь $(\sigma = 0.04 \frac{H}{M})$ диаметром d = 14cM, если процесс выдувания изотермический? Чему равно избыточное давление внутри пузыря?

Дано:
$$\sigma = 0.04 \frac{H}{M}$$
, $d = 14c_M = 0.14_M$.

Найти: А, ∆р.

Решение: Изменение площади поверхности пленки пузыря будет равна площади надутого мыльного пузыря, так как изначально его вообще не было: $\Delta S = \pi \cdot d^2$. Работа — изменение энергии $A = \Delta E = \sigma \Delta S = \sigma \cdot \pi \cdot d^2 0.04 \cdot 3.14 \cdot 0.14^2 = 2.46 \cdot 10^{-3} \, (\text{Дж})$. Для нахождения избыточного давления, создаваемого сферической поверхностью жидкости, воспользуюсь формулой Лапласа, учитывая, что пузырь искривлен с двух сторон: $p = 2\frac{2\sigma}{R} = 2\frac{4\sigma}{d} = 2\frac{4\cdot 0.04}{0.14} = 2.29 (\Pi a)$.

Задача 4. Какую работу надо произвести, чтобы выдуть мыльный пузырь $\left(\sigma = 0.04 \frac{H}{M}\right)$ диаметром d , если процесс выдувания изотермический? Чему равно избыточное давление внутри пузыря?

Вариант	1	2	3	4	5	6	7	8	9	10
d , cm	5	6	7	8	9	10	11	12	13	15

Пример 5.

Определить работу сил поля по перемещению заряда Q=1мкКл в поле, созданном заряженным шаром радиуса R, из точки, удаленной от первой на расстояние 2R. Потенциал шара равен $\phi = 1 \kappa B$.

Дано: $\varphi = 10^3 B; Q = 10^{-6} Kл$.

Найти: А.

Решение: Потенциал шара (рассматривается, как от эквивалентного заряда в его центре):

$$\varphi = \frac{1}{4\pi\varepsilon_0} \frac{Q_{III}}{R}$$
.

Потенциалы на расстояниях R и 2R от его поверхности:

$$arphi_R = rac{1}{4\pi arepsilon_0} rac{Q_{III}}{2R}$$
 и $arphi_{2R} = rac{1}{4\pi arepsilon_0} rac{Q_{III}}{3R}$.

Работа по перемещению точечного заряда:

$$A = Q\Delta\varphi = Q(\varphi_R - \varphi_{2R}) = Q\left(\frac{1}{4\pi\varepsilon_0} \frac{Q_{III}}{2R} - \frac{1}{4\pi\varepsilon_0} \frac{Q_{III}}{3R}\right) = \frac{1}{4\pi\varepsilon_0} \frac{QQ_{III}}{R} \left(\frac{1}{2} - \frac{1}{3}\right),$$

Подставив численные значения, получим:

$$A = \frac{\varphi \cdot Q}{6} = \frac{10^3 \cdot 10^{-6}}{6} = 1,67 \cdot 10^{-4} (\text{Дж}).$$

Задача 5. Определить работу сил поля по перемещению заряда Q в поле, созданном заряженным шаром радиуса R, из точки, удаленной от первой на расстояние 2R. Потенциал шара равен ϕ .

Вариант	1	2	3	4	5	6	7	8	9	10
Q, мкКл	10	12	15	17	20	25	5	6	7	8
arphi,кВ	2,5	1,5	1,6	1,7	1,8	1	1,2	1,5	1,7	2,0

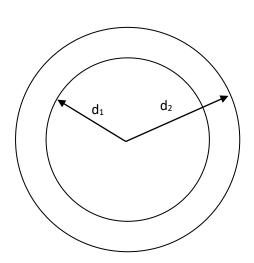
Пример 6.

Электрическое поле образовано точечным зарядом $1.5 \cdot 10^{-9} \, K\pi$. На каком расстоянии друг от друга расположены в вакууме две эквипотенциальные поверхности с потенциалами 45 и 30 В.

Дано: $Q=1,5\cdot 10^{-9}$ Kл, $\varphi_1=45B; \varphi_2=30B$.

Найти: d.

Решение: Потенциалы от точечного заряда на разных расстояниях от него:


$$arphi_1 = rac{1}{4\pi arphi_0} \cdot rac{Q}{d_1}$$
 и $arphi_2 = rac{1}{4\pi arphi_0} \cdot rac{Q}{d_2}$.

Откуда диаметры эквипотенциальных поверхностей:

тенциальных поверхностей:
$$d_1 = \frac{4\pi\varepsilon_0\varphi_1}{Q} = \frac{1,5\cdot 10^{-9}}{4\cdot 3,14\cdot 8,85\cdot 10^{-12}\cdot 45} = 0,3(\mathit{M}) \text{ и}$$

$$d_2 = \frac{4\pi\varepsilon_0\varphi_1}{Q} = \frac{1,5\cdot 10^{-9}}{4\cdot 3,14\cdot 8,85\cdot 10^{-12}\cdot 30} = 0,45(\mathit{M}).$$

И тогда расстояние между ними:

$$d = d_2 - d_1 = 0.45 - 0.3 = 0.15(M)$$
.

Задача 6. Электрическое поле образовано точечным зарядом Q. На каком расстоянии друг от друга расположены в вакууме две эквипотенциальные поверхности с потенциалами ϕ_1 и ϕ_2 .

Вариант	1	2	3	4	5	6	7	8	9	10
Q, нКл	1,0	1,2	1,5	1,7	2,0	2,5	5	6	7	8
φ1, Β	25	15	25	20	15	35	30	10	17	20
φ2, Β	25	40	30	30	15	40	30	12	15	10